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Abstract. The one-dimensional Hubbard model with open boundary conditions is exactly solved
by means of the algebraic Bethe ansatz. The eigenvalue of the transfer matrix and the energy
spectrum, as well as the Bethe ansatz equations, are obtained.

1. Introduction

The one-dimensional (1D) Hubbard model has been one of the most fundamental and
favoured integrable models in non-perturbative quantum field theory. It exhibits on-site
Coulomb interaction and correlated hopping which might possibly reveal a promising role
in understanding the mystery of high-Tc superconductivity. Since Lieb and Wu [1], in 1968,
solved the 1D Hubbard model with periodic boundary conditions (BC) using the coordinate
Bethe ansatz, there has been a great deal of work devoted to the study of this model. A
remarkable step was performed by Shastry [2] who showed that the Hamiltonian of the
1D Hubbard periodic chain commutes with a one-parameter family of transfer matrices
of an equivalent coupled symmetric XY spin chain and who also gave a direct proof of
the integrability of the model by presenting the quantum R-matrix. Later on, Wadati and
coworkers [3, 4] further studied its integrability in terms of the quantum inverse scattering
method (QISM) [5,6]. Very recently, Martins and Ramos [7] proposed a useful way of solving
the eigenvalue problem of the transfer matrix of the 1D Hubbard model with periodic BC by
means of the algebraic Beth ansatz. Their approach provides us with a unified way to solve a
wide class of Hubbard-like models [8, 9] by the algebraic Bethe ansatz.

On the other hand, in recent years, there has been much interest in the study of the quantum
integrable systems with open BC, i.e., the systems of finite interval with independent BC on
each end. The presence of the boundary fields which lead to a pure back scattering on each
end of the quantum chain and the exhibition of the quantum group symmetry by special choice
of the boundary parameters endow the system with rich physical properties [10–12] from a
thermodynamical point of view. A systematic approach to handle the open BC for 1D integrable
quantum chains was proposed by Sklyanin [13]. A further extension of Sklyanin’s formalism
to deal with a more general class of models associated with Lie (super) algebras was proposed
by Mezincescu and Nepomechie [14]. The graded version of the boundary QISM was worked
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out in [15,16]. We also remark that the coordinate Bethe ansatz for the 1D Hubbard model with
integrable BC was studied in [19]. At present, though there are several authors [15, 17–19]
who have studied the open BC for the 1D Hubbard model, the algebraic Bethe ansatz solution
has not yet been achieved. Actually, the diagonalization of the transfer matrix which provide
us with the spectrum of all conserved charges should be more essential in studying the finite-
temperature properties of the integrable models [20,21] than diagonalization of the underlying
Hamiltonian. But, as we know, the reflection equations for the 1D Hubbard model are much
more involved and the quantum R-matrix does not have the additive property that makes it
difficult to build up the necessary commutation rules among the diagonal and creation fields.
In this paper, we intend to generalize Sklyanin’s formalism to solve the 1D Hubbard model
with open BC. The eigenvalue of the transfer matrix and Bethe ansatz equations for the model
is given. It is found that the model exhibits a hidden XXX spin open chain which plays a crucial
role in solving the model.

This paper is organized as follows. In section 2, we shall recall the main results about open
BC for the 1D Hubbard model in order to introduce the notation which is used in this paper.
In section 3, we perform the algebraic Bethe ansatz approach for the model. In section 4, we
formulate the nested algebraic Bethe ansatz for the hidden XXX quantum spin open chain and
present our main results. Section 5 is devoted to the conclusions.

2. The 1D Hubbard model with boundary fields

Let us consider the 1D Hubbard model with boundary fields determined by the Hamiltonian [15,
17, 18]

H = −
N−1∑
j=1

∑
s

(a
†
j+1sajs + a

†
jsaj+1s) + U

N∑
j=1

(nj↑ − 1
2 )(nj↓ − 1

2 )

+p+(2n1↑ − 1) + p−(2n1↓ − 1) + q+(2nN↑ − 1) + q−(2nN↓ − 1). (2.1)

Here p± and q± are the free boundary parameters characterizing the boundary fields. The
coupling U describes the on-site Coulomb interaction and a

†
js and ajs are creation and

annihilation operators with spins (s =↑ or ↓) at site j satisfying the anti-commutation relations

{ajs, aj ′s ′ } = {a†
js, a

†
j ′s ′ } = 0 (2.2)

{ajs, a
†
j ′s ′ } = δjj ′δss ′ (2.3)

and njs = a
†
jsajs is the density operator. The Lax operator is given [3, 4] by

Lj (u) =




−eh(u)fj↑fj↓ −fj↑aj↓ iaj↑fj↓ ieh(u)aj↑aj↓
−ifj↑a

†
j↓ e−h(u)fj↑gj↓ e−h(u)aj↑a

†
j↓ iaj↑gj↓

a
†
j↑fj↓ e−h(u)a

†
j↑aj↓ e−h(u)gj↑fj↓ gj↑aj↓

−ieh(u)a
†
j↑a

†
j↓ a

†
j↑gj↓ igj↑a

†
j↓ −eh(u)gj↑aj↓


 (2.4)

where

fjs = sin u − (sin u − i cos u)njs gjs = cos u − (cos u + i sin u)njs .

With the grading P(1) = P(4) = 0, P(2) = P(3) = 1 and the constraint condition

sinh 2h(u)

sin 2u
= U

4
(2.5)

the Lax operator (2.4) satisfies the graded Yang–Baxter algebra

R12(u, v)
1

T (u)
2

T (v) = 2
T (v)

1
T (u)R12(u, v) (2.6)
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where the monodromy matrix T (u) is defined by

T (u) = LN(u) . . .L1(u) (2.7)

and
1

T (u) = T (u) ⊗s I
2

T (u) = I ⊗s T (u). (2.8)

here ⊗s is the super direct product

[A⊗sB]αβ,γ δ = (−1)[P(α)+P(γ )]P(β)AαγBβδ.

For our convenience in practical calculation, we display the associated quantum R12(u, v)-
matrix in the appendix. One may show that R12(u, v) enjoys the following graded reflection
equations (RE) [18]:

R12(u, v)
1

K− (u)R21(v,−u)
2

K− (v) =
2

K− (v)R12(u,−v)
1

K− (u)R21(−v,−u) (2.9)

RSt1St2
21 (v, u)

1

KSt1
+ (u)RSt1St2

12 (−u, v)

2

KSt2
+ (v)

=
2

KSt2
+ (v)RSt1St2

21 (−v, u)
1

KSt1
+ (u)RSt1St2

12 (−u,−v) (2.10)

which ensure the integrability of the model (2.1), provided that

K±(u) =




K1±(u) 0 0 0
0 K2±(u) 0 0
0 0 K3±(u) 0
0 0 0 K4±(u)


 (2.11)

where p+ = p− = ξ−/2

K1−(u) = λ−(e−h(u) cos u − eh(u)ξ− sin u)(eh(u) cos u − e−h(u)ξ− sin u)

K2−(u) = λ−(e−h(u) cos u + eh(u)ξ− sin u)(e−h(u) cos u − eh(u)ξ− sin u)

K3−(u) = λ−(e−h(u) cos u + eh(u)ξ− sin u)(e−h(u) cos u − eh(u)ξ− sin u)

K4−(u) = λ−(eh(u) cos u + e−h(u)ξ− sin u)(e−h(u) cos u + eh(u)ξ− sin u)

(2.12)

and q+ = q− = ξ+/2

K1+(u) = λ+(e
−h(u)ξ+ cos u + eh(u) sin u)(eh(u)ξ+ cos u + e−h(u) sin u)

K2+(u) = λ+(e
h(u)ξ+ cos u + e−h(u) sin u)(eh(u)ξ+ cos u − e−h(u) sin u)

K3+(u) = λ+(e
h(u)ξ+ cos u + e−h(u) sin u)(eh(u)ξ+ cos u − e−h(u) sin u)

K4+(u) = λ+(e
h(u)ξ+ cos u − e−h(u) sin u)(e−h(u)ξ+ cos u − eh(u) sin u).

(2.13)

Here λ± and ξ± are arbitrary constants describing boundary effects. Sta stands for the inverse
of the supertransposition in the space a. The supertransposition is defined by

(Aij )
St = (−1)[P(i)+1]P(j)Aji .

We would like to remark that Zhou [15] first gave the boundaryK±-matrices equivalent to (2.12)
and (2.13) in terms of QISM. Consequently, using Lax pair formulation, the authors of [17]
presented two classes of boundary K±-matrices, leading to four possible boundary terms in
the 1D Hubbard open chain Hamiltonian, while Shiroishi and Wadati [18] studied the open
BC for the model in terms of the graded version of QISM and also presented two classes of
the solutions to the graded RE. The second solution to the graded RE (2.9) and (2.10) permits
the boundary fields with p+ = −p− and q+ = −q− corresponding to magnetic boundary
fields (see [15,17,18]). In this paper, we restrict ourselves to studying the chemical boundary
fields (2.12) and (2.13) based on the consideration that this kind of BC will bring us a simpler
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boundary K-matrix for the hidden XXX open chain. For other kinds of BC, of course, we may
treat them in a similar way. It is found that the Hamiltonian (2.1) is related to the double-row
monodromy matrix

τ(u) = Str0K+(u)T (u)K−(u)T −1(−u) (2.14)

in the following way:

τ(u) = c1u + c2u
2 + c3(H + const)u3 + · · · (2.15)

where ci , i = 1, . . . , 4, are some scalar functions of boundary parameters. Str0 denotes the
supertrace carried out in auxiliary space v0.

3. Algebraic Bethe ansatz approach

According to the algebraic Bethe ansatz, let us first choose the standard ferromagnetic
pseudovacuum state |0〉i

|0〉i =
(

1
0

)
i

⊗s

(
1
0

)
i

(3.1)

as a highest vector, which corresponds to the doubly occupied state. Following the notation
introduced in [22], we define the monodromy matrix T (u) as

T (u) =




B(u) B1(u) B2(u) F (u)

C1(u) A11(u) A12(u) E1(u)

C2(u) A21(u) A22(u) E2(u)

C3(u) C4(u) C5(u) D(u)


 (3.2)

T −1(−u) =




B(u) B1(u) B2(u) F (u)

C1(u) A11(u) A12(u) E1(u)

C2(u) A21(u) A22(u) E2(u)

C3(u) C4(u) C5(u) D(u)


 (3.3)

and

T−(u) = T (u)K−(u)T −1(−u)

=




B̃(u) B̃1(u) B̃2(u) F̃ (u)

C̃1(u) Ã11(u) Ã12(u) Ẽ1(u)

C̃2(u) Ã21(u) Ã22(u) Ẽ2(u)

C̃3(u) C̃4(u) C̃5(u) D̃(u)


 . (3.4)

It is not difficult to show that T−(u) also satisfies the RE (2.9). With T (u) and T −1(−u) acting
on the pseudovacuum state

|0〉 = ⊗N
i=1|0〉i (3.5)
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we have the following properties (upon a common factor):

B(u)|0〉 = B(u)|0〉 =
{cos u

sin u
e2h(u)

}N

|0〉

D(u)|0〉 = D(u)|0〉 =
{

sin u

cos u
e2h(u)

}N

|0〉
Aaa(u)|0〉 = Aaa(u)|0〉 = |0〉
A21(u)|0〉 = A21(u)|0〉 = 0
A12(u)|0〉 = A12(u)|0〉 = 0
Ba(u)|0〉 �= 0 Ba(u)|0〉 �= 0
Ea(u)|0〉 �= 0 Ea(u)|0〉 �= 0
F(u)|0〉 �= 0 F(u)|0〉 �= 0
Ci(u)|0〉 = Ci(u)|0〉 = 0

i = 1, . . . , 5 a, b = 1, 2.

(3.6)

Using the properties (3.6), and the Yang–Baxter algebra

2
T

−1

(−u)R12(u,−u)
1

T (u) = 1
T (u)R12(u,−u)

2
T

−1

(−u) (3.7)

and after some algebra, one can obtain

B̃(u)|0〉 = W−
1 (u)B(u)B(u)|0〉 (3.8)

Ãaa(u)|0〉 =
{
ρ2(u,−u)

ρ1(u,−u)
B(u)B(u) + W−

2 (u)Aaa(u)Aaa(u)

}
|0〉 (3.9)

D̃(u)|0〉 =
{

1

ρ4(u,−u)

(
K2−(u) − ρ2(u,−u)

ρ1(u,−u)

) 2∑
a=1

Aaa(u)Aaa(u)

+
ρ3(u,−u)

ρ1(u,−u)
B(u)B(u) + W−

4 (u)D(u)D(u)

}
|0〉 (3.10)

B̃a(u)|0〉 �= 0 Ẽa(u)|0〉 �= 0 (3.11)

Ãab(u)|0〉 = 0 F̃ (u) �= 0 (3.12)

C̃i(u)|0〉 = 0 i = 1, . . . , 5 a �= b = 1, 2 (3.13)

where

W−
1 (u) = 1 (3.14)

W−
2 (u) = − (e−2h(u) + e2h(u)) sin u cos u(ξ−eh(u) cos u − e−h(u) sin u)

(e2h(u) cos2 u − e−2h(u) sin2 u)(ξ−e−h(u) sin u − eh(u) cos u)
(3.15)

W−
4 (u) = (e−2h(u) + e2h(u)) sin u cos u sin 2u

cos 2u(e−2h(u) cos2 u − e2h(u) sin2 u)

× (e−h(u)ξ− cos u − eh(u) sin u)(eh(u)ξ− cos u + e−h(u) sin u)

(e−h(u) cos u − eh(u)ξ− sin u)(eh(u) cos u − e−h(u)ξ− sin u)
. (3.16)

In this paper, for the sake of simplicity of calculation, we take the Boltzmann weight ρ2 = 1.
We also notice that the operators B̃a(u), Ẽa(u) and F̃ (u) still play the roles of the creation fields,
otherwise C̃i(u) are the annihilation fields. Taking into account the following transformations:

Ã′
aa(u) = Ãaa(u) − ρ2(u,−u)

ρ1(u,−u)
B̃(u) (3.17)

D̃′(u) = D̃(u) − ρ3(u,−u)

ρ1(u,−u)
B̃(u) − 1

ρ4(u,−u)

2∑
a=1

Ã′
aa(u) (3.18)
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we may express the transfer matrix (2.14) in the following way:

τ(u) = Str0K+(u)T−(u)

= W +
1 (u)B̃(u) + W +

2 (u)

2∑
a=1

Ã′
aa(u) + W +

4 (u)D̃
′(u) (3.19)

where

W +
1 (u) = (e−2h(u) + e2h(u)) sin u cos u sin 2u

cos 2u(e2h(u) cos2 u − e−2h(u) sin2 u)
f (u)

× (e−h(u)ξ+ sin u − eh(u) cos u)(eh(u)ξ+ sin u − e−h(u) cos u)

(e−h(u)ξ+ cos u + eh(u) sin u)(eh(u)ξ+ cos u + e−h(u) sin u)
(3.20)

W +
2 (u) = (e−2h(u) + e2h(u)) sin u cos u

(e−2h(u) cos2 u − e2h(u) sin2 u)
f (u)

× (eh(u)ξ+ cos u − e−h(u) sin u)(eh(u)ξ+ sin u − e−h(u) cos u)

(e−h(u)ξ+ cos u + eh(u) sin u)(eh(u)ξ+ cos u + e−h(u) sin u)
(3.21)

W +
4 = (e−h(u)ξ+ cos u − eh(u) sin u)(eh(u)ξ+ cos u − e−h(u) sin u)

(e−h(u)ξ+ cos u + eh(u) sin u)(eh(u)ξ+ cos u + e−h(u) sin u)
f (u) (3.22)

with

f (u) = e−2Nh(u) cos2N u sin2N uK1−(u)K1+(u). (3.23)

Now we proceed with the key step to build up the necessary commutation relations between
the diagonal and creation fields, respectively. From the RE (2.9) and definition (3.4), after many
substitution steps, we can get the following important commutation relations:

B̃(u)B̃a(v) = ρ1(v, u)ρ10(u,−v)

ρ1(v,−u)ρ10(−u,−v)
B̃a(v)B̃(u) + u.t. (3.24)

D̃′(u)B̃a(v) = −ρ7(u,−v)ρ9(−v,−u)

ρ9(u,−v)ρ8(u, v)
B̃a(v)D̃

′(u) + u.t. (3.25)

Ã′
ab(u)B̃a(v) = −ρ4(−v,−u)ρ10(u,−v)

ρ1(u,−v)ρ9(u, v)
reagh(u,−v)

×rihcb(−v,−u)B̃e(v)Ã
′
gi(u) + u.t. (3.26)

B̃a(u) ⊗ B̃b(v) = ρ10(u,−v)ρ4(−v,−u)

ρ1(u, v)ρ10(v,−u)

{
B̃c(v) ⊗ B̃d(u)

− ρ6(u,−v)

ρ10(u,−v)
F̃ (v)�ξ(I ⊗ Ã(u))

}
· r(−v,−u)

+
ρ6(v,−u)

ρ10(v,−u)
F̃ (u)�ξ(I ⊗ Ã(v))

+
ρ8(v,−u)ρ6(−v,−u)

ρ10(v,−u)ρ8(−v,−u)
[F̃ (v)B̃(u) − F̃ (u)B̃(v)] · �ξ (3.27)

where
�ξ = (0, 1,−1, 0)

Ã(u) =
(
Ã11(u) Ã12(u)

Ã21(u) Ã22(u)

)

r(u,−v) =




1 0 0 0
0 a(u,−v) b(u,−v) 0
0 b(u,−v) a(u,−v) 0
0 0 0 1


 (3.28)
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r(−v,−u) =




1 0 0 0
0 a(−v,−u) b(−v,−u) 0
0 b(−v,−u) a(−v,−u) 0
0 0 0 1


 (3.29)

with the weights

a(u,−v) = ρ3(u,−v)ρ4(u,−v) − 1

ρ9(u,−v)ρ10(u,−v)
(3.30)

b(u,−v) = 1 − a(u,−v) (3.31)

a(−v,−u) = ρ5(−v,−u)ρ8(−v,−u) + ρ2
6 (−v,−u)

ρ4(−v,−u)ρ8(−v,−u)
(3.32)

b(−v,−u) = 1 − a(−v,−u). (3.33)

In the commutation relations (3.24)–(3.26), we had to omit all unwanted terms because they
take a large amount of space to display. It turns out that the auxiliary matrices r(u,−v)

and r(−v,−u) are nothing but the rational R-matrices of an isotropic six-vertex model. The
structure of the auxiliary matrix is very important to solve the Hubbard-like [9,23] models with
open BC that exhibit a similar structure to the auxiliary matrices equations (3.28) and (3.29).
If performing the parametrization introduced in [7, 24]†,

x̃ = sin x

cos x
e−2h(x) − cos x

sin x
e2h(x) x = u, v (3.34)

one may find that

a(u,−v) = U

ũ + ṽ + U
(3.35)

b(u,−v) = ũ + ṽ

ũ + ṽ + U
(3.36)

a(−v,−u) = U

ũ − ṽ + U
(3.37)

b(−v,−u) = ũ − ṽ

ũ − ṽ + U
. (3.38)

In view of the commutation relation (3.27), the creation operators B̃a , Ẽa do not interwine. So
it is reasonable that the eigenvectors of the transfer matrices are generated only by the creation
operators Ba(u) and F(u) or Ea(u) and F(u). Unfortunately, it seems to be very difficult to
construct the explicit form of the multi-particle vector, even in the case of the Hubbard periodic
chain [7]. But it does have a similar recursive relation as that for the Hubbard periodic chain.
Here we prefer the n-particle vector in a formal form, namely

|1n(v1, . . . , vn)〉 = 1n(v1, . . . , vn)F
a1,...,an |0〉 (3.39)

where the n-particle vector 1n(v1, . . . , vn) may be given by a recursive relation

1n(v1, . . . , vn) = B̃a(v1) ⊗ 1n−1(v2, . . . , vn)

+
n∑

j=2

[�ξ ⊗ F̃ (v1)]1n−2(v2, . . . , vj−1, vj+1, . . . , vn)

×B̃(vj )g
(n)
j−1(v1, . . . , vn)

−
n∑

j=2

[�ξ ⊗ F̃ (v1)]1n−2(v2, . . . , vj−1, vj+1, . . . , vn)

×(I ⊗ Ã(vj ))h
(n)
j−1(v1, . . . , vn). (3.40)

† The author would like to thank the referee for drawing his attention to [24].
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From the commutation relation (3.27), we can conclude that 1n(v1, . . . , vn) also satisfies the
symmetry relation

1n(v1, . . . , vj , vj+1, . . . , vn) = ρ10(vj ,−vj+1)ρ4(−vj+1,−vj )

ρ1(vj , vj+1)ρ10(vj+1,−vj )

×1n(v1, . . . , vj+1, vj , . . . , vn) · r(−vj+1,−vj ) (3.41)

based on the following relation:

ρ4(−vj+1,−vj )

ρ1(vj , vj+1)
�ξ · r(−vj+1,−vj )

= ρ8(vj+1,−vj )ρ6(−vj+1,−vj )ρ8(−vj ,−vj+1)

ρ8(−vj+1, vj )ρ8(vj ,−vj+1)ρ6(−vj ,−vj+1)
· �ξ . (3.42)

This symmetry, giving a restriction to the functions h
(n)
j−1(v1, . . . , vn) and g

(n)
j−1(v1, . . . , vn), is

very useful in deducing the coefficients and in simplifying the unwanted terms in the eigenvalue
of the transfer matrix. In fact, after performing three-particle scattering, the explicit form of
these coefficients can be fixed. But checking three-particle scattering is indeed a extremely
tough problem. We had to leave the coefficients to be determined later. Explicitly, we display
the two-particle state:

12(v1, v2) = B̃a1(v1) ⊗ B̃a2(v2) − ρ6(v2,−v1)

ρ10(v2,−v1)
F̃ (v1)�ξ(I ⊗ Ã(v2))

+
ρ8(v2,−v1)ρ6(−v2,−v1)

ρ10(v2,−v1)ρ8(−v2,−v1)
F̃ (v1)B̃(v2) · �ξ . (3.43)

In the above expressions, Fa1,...,an are the coefficients of an arbitrary linear combination of the
vectors reflecting the ‘spin’ degrees of freedom with ai = 1, 2. �ξ takes on the role of forbidding
two spin up or two spin down at the same site. F̃ (u) creates a local hole pair with opposite
spins. With the diagonal fields acting on the vector (3.39), we may get phenomenologically

B̃(u)|1n(v1, . . . , vn)〉 = B̃(u)

n∏
i=1

ρ1(vi, u)ρ10(u,−vi)

ρ1(vi,−u)ρ10(−u,−vi)
|1n(v1, . . . , vn)〉 + u.t. (3.44)

D̃′(u)|1n(v1, . . . , vn)〉 = D̃′(u)
n∏

i=1

−ρ7(u,−vi)ρ9(−vi,−u)

ρ9(u,−vi)ρ8(u, vi)
|1n(v1, . . . , vn)〉 + u.t. (3.45)

Ã′
aa(u)|1n(v1, . . . , vn)〉 = Ã′

aa(u)

n∏
i=1

−ρ4(−vi,−u)ρ10(u,−vi)

ρ1(u,−vi)ρ9(u, vi)
r12(ũ + ṽ1)

e1a
h1g1

×r12(ũ − ṽ1)
i1h1
al1

r12(ũ + ṽ2)
e2g1
h2g2

r12(ũ − ṽ2)
i2h2
i1l2

. . .

×r12(ũ + ṽn)
engn−1
hngn

r12(ũ − ṽn)
inhn

in−1ln
|1n(v1, . . . , vn)〉 + u.t. (3.46)

It follows that

τ(u)|1n(v1, . . . , vn)〉 =
{
W +

1 (u)B̃(u)

n∏
i=1

ρ1(vi, u)ρ10(u,−vi)

ρ1(vi,−u)ρ10(−u,−vi)

+W +
4 (u)D̃

′(u)
n∏

i=1

−ρ7(u,−vi)ρ9(−vi,−u)

ρ9(u,−vi)ρ8(u, vi)

+W +
2 (u)Ã

′
aa(u)

n∏
i=1

−ρ4(−vi,−u)ρ10(u,−vi)

ρ1(u,−vi)ρ9(u, vi)
3(1)(ũ, {ṽi})

}

×|1n(v1, . . . , vn)〉 (3.47)
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provided that

W +
1 (u)B̃(u)

W +
2 (u)Ã

′
11(u)

∣∣∣∣∣
u=vi

= −3(1)(ũ = ṽi , {ṽi}) i = 1, . . . , n. (3.48)

Here r12(u) = P · r(u) and 3(1)(ũ, {ṽi}) is the eigenvalue of the nested transfer matrix (3.50),
i.e.,

τ (1)(ũ, {ṽi})F e1,...,en = 3(1)(ũ, {ṽi})F e1,...,en (3.49)

where

τ (1)(ũ, {ṽi}) = Tr0 T
(1)(ũ)T (1)−1

(−ũ). (3.50)

The nested monodromy matrices T (1)(ũ) and T (1)−1
(−ũ) are

T (1)(ũ) = r12(ũ + ṽ1)
e1a
h1g1

, . . . , r12(ũ + ṽn)
engn−1
hngn

(3.51)

T (1)−1
(−ũ) = r12(ũ − ṽn)

inhn

in−1ln
, . . . , r12(ũ − ṽ1)

i1h1
al1

. (3.52)

We would like to emphasize that B̃(u), D̃′(u) and Ã′
11(u) are the eigenvalues of the

corresponding diagonal operators acting on the pseudovacuum state, which were given in
equations (3.17)–(3.23). Hereafter much care has to be paid to the differences between the
variables ũ, ṽ and variables u, v, which we have to adopt on both sides of equation (3.48).
So far, the eigenvalue problem of the 1D Hubbard model with boundaries reduces to solving
the nested auxiliary transfer matrix (3.49) which associates with an inhomogeneous isotropic
six-vertex model with open BC.

4. The nested Bethe ansatz

In this section, we proceed with the diagonalization of the auxiliary transfer matrix (3.50).
Following Sklyanin’s formalism [13], performing the nested Bethe ansatz has not been a
difficult problem so far. It is easy to check that the r12(u)-matrix satisfies the Yang–Baxter
algebra

r12(ũ1 − ũ2)
1

T (1) (ũ1, {ṽi})
2

T (1) (ũ2, {ṽi}) =
2

T (1) (ũ2, {ṽi})
1

T (1) (ũ1, {ṽi})r12(ũ1 − ũ2)

(4.1)

and the reflection equations

r12(ũ1 − ũ2)

1

K
(1)
− (ũ1)r12(ũ1 + ũ2)

2

K
(1)
− (ũ2)

=
2

K
(1)
− (ũ2)r12(ũ1 + ũ2)

1

K
(1)
− (ũ1)r12(ũ1 − ũ2) (4.2)

r12(ũ2 − ũ1)
1

K(1)
+ (ũ1)r12(−ũ1 − ũ2 − 2U)

2

K(1)
+ (ũ2)

=
2

K(1)
+ (ũ2)r12(−ũ1 − ũ2 − 2U)

1

K(1)
+ (ũ1)r12(ũ2 − ũ1). (4.3)

In our case, the K
(1)
± (u) = I . Let us define the nested monodromy matrix

T̃
(1)
− (ũ) = T (1)(ũ)T (1)−1

(−ũ) =
(
Ã(1)(ũ) B̃(1)(ũ)

C̃(1)(ũ) D̃(1)(ũ)

)
(4.4)
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which also satisfies the RE (4.2). Using the main ingredients (4.1)–(4.4) describing the open
BC compatible with the integrability of the model, and following all steps for solving the XXZ
open chain in [13], one can present the following results:

3(1)(ũ, {ũ1, . . . , ũM}{ṽi})|1(1)(ũl, {ṽi})〉 =
{

2(ũ + U)

2ũ + U

M∏
l=1

(ũ + ũl)(ũ − ũl − U)

(ũ − ũl)(ũ + ũl + U)

+
2ũ

2ũ + U

n∏
i=1

b(ũ + ṽi )b(ũ − ṽi )

×
M∏
l=1

(ũ + ũl + 2U)(ũ − ũl + U)

(ũ − ũl)(ũ + ũl + U)

}
|1(1)(ũl, {ṽi})〉 (4.5)

provided that

n∏
i=1

(ũj + ṽi + U)(ũj − ṽi + U)

(ũj + ṽi )(ũj − ṽi )
=

M∏
l=1,
l �=j

(ũj + ũl + 2U)(ũj − ũl + U)

(ũj + ũl)(ũj − ũl − U)
j = 1, . . . ,M

(4.6)

which indeed ensures the cancellation of all unwanted terms in (4.5). Here the ‘spin’ part of
the multi-particle states is given by

|1(1)(ũl, {ṽi})〉 = B̃(1)(ũ1), . . . , B̃
(1)(ũM)|0〉(1) (4.7)

where M is the number of holes with spin down and n is the total number of holes.
Finally, if we adopt the variables z±(vi) used in [7], i.e.,

z−(vi) = cos vi

sin vi

e2h(vi ) z+(vi) = sin vi

cos vi

e2h(vi ) (4.8)

and make a shift on the spin rapidity ũj = λ̃j −U/2, the eigenvalue of the transfer matrix (2.14)
is given as

τ(u)|1n(v1, . . . , vn)〉 =
{
W +

1 (u)W
−
1 (u)[z−(u)]2N

×
n∏

i=1

sin2 u(1 + z−(vi)/z+(u))(1 + 1/z−(vi)z+(u))

cos2 u(1 − z−(vi)/z−(u))(1 − 1/z−(vi)z−(u))

+W +
4 (u)W

−
4 (u)[z+(u)]

2N
n∏

i=1

sin2 u(1 + z−(vi)z−(u))(1 + z−(u)/z−(vi))

cos2 u(1 − z−(vi)z+(u))(1 − z+(u)/z−(vi))

+W +
2 (u)W

−
2 (u)

2(ũ + U)

2ũ + U

×
n∏

i=1

sin2 u(1 + z−(vi)/z+(u))(1 + 1/z−(vi)z+(u))

cos2 u(1 − z−(vi)/z−(u))(1 − 1/z−(vi)z−(u))

×
M∏
l=1

(ũ + λ̃l − U/2)(ũ − λ̃l − U/2)

(ũ − λ̃l + U/2)(ũ + λ̃l + U/2)

+W +
2 (u)W

−
2 (u)

2ũ

2ũ + U

n∏
i=1

sin2 u(1 + z−(vi)z−(u))(1 + z−(u)/z−(vi))

cos2 u(1 − z−(vi)z+(u))(1 − z+(u)/z−(vi))

×
M∏
l=1

(ũ + λ̃l + 3U/2)(ũ − λ̃l + 3U/2)

(ũ − λ̃l + U/2)(ũ + λ̃l + U/2)

}
|1n(v1, . . . , vn)〉 (4.9)
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provided that

ζ(vi, ξ+)ζ(vi, ξ−)[z−(vi)]
2N =

M∏
l=1

(ṽi + λ̃l − U/2)(ṽi − λ̃l − U/2)

(ṽi − λ̃l + U/2)(ṽi + λ̃l + U/2)
(4.10)

n∏
i=1

(λ̃j + ṽi + U/2)(λ̃j − ṽi + U/2)

(λ̃j + ṽi − U/2)(λ̃j − ṽi − U/2)
=

M∏
l=1,
l �=j

(λ̃j + λ̃l + U)(λ̃j − λ̃l + U)

(λ̃j + λ̃l − U)(λ̃j − λ̃l − U)

j = 1, . . .M i = 1, . . . , n (4.11)

where

ζ(u, ξ±) = e−h(u)ξ± sin u − eh(u) cos u

eh(u)ξ± cos u − e−h(u) sin u
. (4.12)

If we express the variable z−(ui) in terms of the momenta ki (hole) by z−(ui) = eiki , from the
relation (2.15), the energy is given by

En = ξ− + ξ+ − (N/2 − n)U −
n∑

i=1

4 cos ki. (4.13)

Equations (4.9)–(4.13) constitute our main results of this paper. Now let us adopt the
conventional notations, using the momenta ki instead of the charge rapidity ṽi via the
relation (3.34) and making a scaling on spin rapidity λ̃j as λj = − i

2 λ̃j . Then the Bethe
equations (4.10) and (4.11) are

ζ(ki, ξ+)ζ(ki, ξ−)ei2Nki =
M∏
l=1

(sin ki − λl − iU
4 )(sin ki + λl − iU

4 )

(sin ki − λl + iU
4 )(sin ki + λl + iU

4 )
(4.14)

n∏
i=1

(sin ki − λj − iU
4 )(sin ki + λj − iU

4 )

(sin ki − λj + iU
4 )(sin ki + λj + iU

4 )
=

M∏
l=1,
l �=j

(λj − λl + iU
2 )(λj + λl + iU

2 )

(λj − λl − iU
2 )(λj + λl − iU

2 )

j = 1, . . .M i = 1, . . . , n (4.15)

with

ζ(ki, ξ±) = ξ± − eiki

ξ±eiki − 1
. (4.16)

So far our results can be incorporated into the notation used in [19], which provides us with
a detailed computation of the low-lying spectrum for the 1D Hubbard model with boundary
fields based on the coordinate Bethe ansatz solution. Their discussions are also valid, apart
from the different expression for the boundary K-matrices. It is found that the boundary fields
are indeed nontrivial to the ground-state properties as well as the low-lying spectrum. The
function ζ(ki, ξ±) contributes as a phase shift to the density of the roots of the rapidities. The
boundary fields ξ±, acting as the impurity parameters, change the band filling, the boundary
surface energy and the mesoscopic effects as well.

5. Conclusion

We have formulated the algebraic Bethe ansatz solution for the 1D Hubbard model with
open boundaries. The Bethe ansatz equations, the eigenvalue of the transfer matrix and the
energy spectrum have also been given. Comparing our results with the coordinate Bethe
ansatz solution [19], the Bethe ansatz equations (4.10) and (4.11) coincide with those obtained
in [19]. In addition to this, we presented explicitly the eigenvalue of the transfer matrix
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and the main structure of the n-particle eigenvectors. This paper seems to bridge a gap in
solving the Hubbard-like open chains by the quantum R-matrix approach with or without the
additive property of spectral parameters, such as the 1D Bariev open chain [25], Uq[Osp(2|2)]
electronic system [23,26], etc. The results obtained provided us with a starting point to study
the thermodynamical properties and correlation functions for the model [6,20]. We notice that
the Bethe equations (4.14) and (4.15) would be reduced to the purely doubling ones for the 1D
Hubbard model with periodic BC if the boundary parameters ξ± → ∞. In such a case, the
model exhibits the closed BC, which preserves the quantum group invariance [27,28]. We also
notice that, if we add the chemical potential term ν

∑N
j=1

∑
s(njs − 1

2 ) to the Hamiltonian (2.1),
the integrability of the model requires that the associated quantum R-matrix with an extra free
parameter [29], which does not have crossing unitarity, should satisfy the new RE. But the
new class of boundary K±-matrices [30] leads to the same Bethe ansatz equations as (4.10)
and (4.11), in spite of the different engenvalues of the transfer matrix. The multiparametric
quantum R-matrix [31] does provide the Bethe equations with an additional phase shift for the
quantum integrable periodic chain. Nevertheless, as far as we know, it is still not clear if there
exist nontrivial phases appearing in the Bethe equations for the quantum open chain associated
with the multiparametric R-matrix. It seems to be more interesting that the 1D Hubbard model
with a special kind of twisted BC can be regarded as a spin ladder model [32]. On the other hand,
if we add the Kondo impurities [11,33,34] J

∑
ss ′ a†

s σss ′as ′ · S to each boundary, the model is
also integrable. If we embed an inhomogeneous Lax operator [4] carrying both charge and spin
degrees of freedom into the open chain, the Hamiltonian (2.1) will have additional impurity
terms leading to an additional phase shift in the Bethe ansatz equations. The impurity parameter
changes the finite-size correction spectrum in a different way from the boundary fields. The
algebraic Bethe ansatz structure of this paper provides a clear picture for different impurity
embedding. We hope that we shall present a class of integrable impurities carrying both charge
and spin degrees of freedom for the 1D Hubbard model with boundary fields in the near future.

Acknowledgments

The author would like to thank M J Martins and A Foerster for proofreading the manuscript
and giving him many valuable suggestions, and also thank H Q Zhou for his remarks on
this manuscript. Many thanks are due to U Grimm, R A Römer and H Fan for their helpful
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Appendix

We display the quantum R(u, v)-matrix of the 1D Hubbard model below [3, 4]:



ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −iρ10 0 0 ρ2 0 0 0 0 0 0 0 0 0 0 0
0 0 −iρ10 0 0 0 0 0 ρ2 0 0 0 0 0 0 0
0 0 0 ρ8 0 0 iρ6 0 0 −iρ6 0 0 ρ3 0 0 0
0 ρ2 0 0 iρ9 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −ρ4 0 0 0 0 0 0 0 0 0 0
0 0 0 iρ6 0 0 −ρ7 0 0 −ρ5 0 0 −iρ6 0 0 0
0 0 0 0 0 0 0 ρ9 0 0 0 0 0 ρ2 0 0
0 0 ρ2 0 0 0 0 0 iρ9 0 0 0 0 0 0 0
0 0 0 −iρ6 0 0 −ρ5 0 0 −ρ7 0 0 iρ6 0 0 0
0 0 0 0 0 0 0 0 0 0 −ρ4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 iρ9 0 0 ρ2 0
0 0 0 ρ3 0 0 −iρ6 0 0 iρ6 0 0 ρ8 0 0 0
0 0 0 0 0 0 0 ρ2 0 0 0 0 0 −iρ10 0 0
0 0 0 0 0 0 0 0 0 0 0 ρ2 0 0 −iρ10 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρ1



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with the Boltzmann weights

ρ1 = (cos u cos vel + sin v sin ue−l)ρ2

ρ4 = (cos u cos ve−l + sin v sin uel)ρ2

ρ9 = (sin u cos ve−l − sin v cos uel)ρ2

ρ10 = (sin u cos vel − sin v cos ue−l)ρ2

ρ3 = (cos u cos vel − sin v sin ue−l)

cos2 u − sin2 v
ρ2

ρ5 = (cos u cos ve−l − sin v sin uel)

cos2 u − sin2 v
ρ2

ρ6 = e−h(cos u sin uel − sin v cos ve−l)

cos2 u − sin2 v
ρ2

and

ρ8 = ρ1 − ρ3

ρ7 = ρ4 − ρ5

l = h(u) − h(v)

h = h(u) + h(v)

which enjoy the following identities:

ρ4ρ1 + ρ9ρ10 = 1

ρ1ρ5 + ρ3ρ4 = 2

ρ2
6 = ρ3ρ5 − 1

ρ2
6 = ρ9ρ10 + ρ7ρ8.
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